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Abstract

We have developed a unigue Fokker-Planck code to study the physics of
plasmas that are trapped in magnetic and potential wells of general shape on a
collisional time scale. The code was designed primarily to apply to mirror
machines, either a simple mirror or a tandem mirror. A plasma confined in a
mirror machine generally consists of various groups of particles trapped
magnetically and/or electrostatically depending on their energy, magnetic
moment, and axial position. Characteristic features of such a plasma are:
first, that the bounce times of trapped partic’es are much shorter than the
collision times; and second, that particles trapped in different axial regions
can have the same energy ana magnetic moment. The former feature allows us to
perform bounce-orbit averaging of the kinetic equation, and the latter feature
indicates that the distribution function can be multivalued. The code solves
a relativistic Fokker-Planck equation averaged over bounce orbits for each
trapped-particle group in a multisheeted phase space. In addition to the
Coulomb collision operator, the code includes a synchrotron radiation term, a
quasi-linear rf diffusion operator, and source and loss terms. The numerical
method consists of a mapping technique and a Galerkin finite-element method.
Example results using the code for electron-cyclotron resonant heating and

neutral beam injection in a tandem mirror are also presented.
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1. INTRODUCTION

The numerical solutions to a Fokker-Planck equation describing
collisional processes in a plasma provide us with various quantitative
information on plasma behavior (e.g., particle and energy confinement times);
thus, they have become an essential tool for understanding confinement
experiments and for designing Targer devices and reactors. Many Fokker-Planck
studies have been done in areas such as confinement in a magnetic mirror,
neutral beam injection in a mirror and a tokamak, lower-hybrid current drive,
runaway electrons, and ion-cyclotron resonant heating. Killeen and his
colleagues [ 1,2] have made many contributions in these fokker-Planck studies;
both in the one- and two-dimensional velocity space anc¢ in the single- and
multi-species cases. Most of these Fokker-Planck studies, however, used a
square-well model where the magnetic field and potential profiles in the axial
direction are approximated by a square-well shape with a certain mirror ratio.
Thus, no spatial variation is involved, and the Fokker-Planck equation is
solved in one- or two-dimensional velocity space.

One method of including the axial variation of a plasma trapped in a
magnetic/potential well is the bounce-averaging technique. This technique is
based on an assumption that the bounce time is much shorter than the collision
time for a representative trapped particle. This technique allows us to
include the effects of axial variation without extending the calculation into
three dimensions; the equation is still solved in a two-dimensional phase
space. A Fokker-Planck code employing bounce averaging was first written by
Cutler et al., [3] and was used to study mirror confinement of jons. Fyfe and

Bernstein [4] developed a bounce-averaged code with a linearized Fokker-P lanck
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operator to study particle losses from a deep electrostatic-magnetic well.
Recently a bounce-averaged code, similar to that of Cutler et al., was
developed to study tokamak transport problems [5). Note that bounce-averaged
calculations often show a significant quantitative difference from square-well
calculations; and this is of great practical importance in designing large
experimental devices and fusion reactors.

Another aspect of all the Fokker-Planck codes developed so far is that
they can treat only a single group of trapped particies. In a mirror machine
with more than one magnetic well and/or with electroststic potential, several
groups of trapped particles exist that interact with each other through
Coulomb collisions. In such situations, more than one particle occurs with
the same energy and magnetic moment, anc these particies are separated in
space. This means that to solve a typical protilem for a mirror machine, we
must deal with a muitivalued distribution function (1i.e., the phase space in
which the Fokker-Planck equation is solved 1s multisheeted). To illustrate
this, we consider electrons trapped in a mirrcr system (Fig. 1). The magnetic
field B has a single well and the potential o has a dip and a peak; this
represents a typical end-plug configuratior fer a tandem mirror with thermal
barriers [6]. The dip in the potential is usually referred to as a thermal
barrier, and the peak is often referred to as a plug potential.

[t is informative to plot the effective potentisl for parallel motion of
an electron as a function of axial position, z. In Fig. 2, we plot uB(z)

+ @ (z), which is the effective potential in & nonrelativistic case, with
magnetic moment u as a parameter, where g ‘= 7e] is the particle charge. We
see that for a given yu and a certain range o total energy e, two

spatially separated trapped electrons can ex st. This fact is also
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represented in the electron phase-space diagram shown in -~ig. 3; i.e., the

part of the phase space below houndary 3 is couble-sheeted. Figure 3 is an
example of a three-region problem: the first region being limited by boundaries
1 and 3, the second by boundaries 1, 2, and 3, the third by boundaries 3 and 4.
tach region is associated with a group of trappec electrons.

In this article, we describe a Fokker-Planck code developed to solve a
Fokker-Planck equation in a phase space such as shown in Fig. 3, and we will
present some numerical results from a few example probiems. In Sec. 2, we
present the relativistic bounce-averaged Fokker-Planck equation derived by
Bernstein and Baxter [7], and we discuss boundary conditions. 1In Sec. 3, we
describe the numerical method based on a mapping technicue and a Galerkin
finite-element procedure, which contrasts with the finite difference method
employed in most existing Fokker-Planck codes. We then present our example

calculations and the results in Sec. 4, and cur conclusions in Sec. 5.

2. RELATIVISTIC BOUNCE-AVERAGED FOKKER-PLANCK EQUATION

The Fokker-Planck kinetic equation for a distrihution function f can be

written as
3f 3f . 3 1 : .
SErY R tapt [METYxBIFAIL v T 0, )

where t is the time, 1'15 the velocity, x is the position, m is the mass, p[= ymx]

2 2\1/2 Z/CE)-1/2

is the momentum, vy [= (1 + p2/m c”) = (1 - v 1 is the relativistic

factor, ¢ is the speed of light, and £ and B are electric and magnetic fields
including both static and rf components. The flux T . due to small-angle

Coulomb collisions is given by
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where subscript b refers to the particle species, and M is the relativistic
counterpart of the dyadic VY- v'i. The flux T'n represents the

radiation reaction resulted from synchrotron radiation, which is given by
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magnetic field.
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momeht, and t[= f-dz/ivulj is the bounce time. In Eg. (4) the coefficients
on the right-hand side represent integrals of the local coefficients along the
bounce orbit of a particle with a given ¢ and pn. £ach coefficient
consists of three terms: the first is the Fokker-Planck coefficient resulting
from Coulomb coilisions; the second is the raciation reaction term; and the
last is the quasi-linear rf-diffusion term. We employ numerical integration
along the orbit for the Coulomb collision and the radiation terms; and we use
the analytical result for the rf diffusion terms obtained by Bernstein and
Baxter [7].

For the Coulomb collision and radiation reaction terms, the coefficients

in £q. (4) can be written as
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form
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for nonrelativistic particles, and
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for relativistic particles [7]. Here_EE is the average kinetic energy of
particle species b, lnAb is the coulomb logarithm; and ?*is the unit

dyadic. Note that we employ a linear Fokker-Planck operator for relativistic
particles. The terms45 and’ﬁ resulting from the synchrotron radiation are

given by [7]
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For the rf diffusion, the coefficients on the right-hand side of Eq. (4)

are given by
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where n represents the cyclotron harmonic number, subscript j represents the

stationary phase point (i.e., the resonant point satisfying v = 0), a, is the rf

~J
electric field at the jth resonant point, u, [= p”j/m] and W, [= plj/m] are
local parallel and perpendicular momentum-per-unit mass respectively, BOj is

A
the static magnetic field, 3], @2, and b comprise a right-handed orthogonal

set, k is the wave vector, 8 is the angle between k and @], w 1s the rf frequency,
Ai(-x) is the Airy function, and Jn(kipj) is the nth-order Bessel function of

the first kina. The resonant points satisfying v = 0 are numerically

calculated for a given magnetic field and potential profiles.

With all the coefficients determined as above, we can solve Eq. (4) for
each group of trapped particles in a phase space such as shown in Fig. 3 with
appropriate boundary conditions. The necessary and sufficient boundary
conditions are:

1. f regular at v, = 0 and y = 0 boundary,

2. f fixed at loss boundary,

3. f or flux T, vanishing at ¢ = ¢ and/or y = Mnax?

max

4. f and flux T, continuous at interface.
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In Fig. 3, the boundary condition (1) at v, * 0 is applied to boundary 2

|
and 4; the phase space below these boundaries is inaccessible. The condition
(2) is applied to boundary 1 and the first segment of boundary 3; these
boundaries separate a passing particle distribution, which is taken to be
fixed, and a trapped particle distribution. The conaition (4) is applied
along the interface between three regions, i.e., the second segment of
boundary 3. Specifically the flux continuity condition is M+, + Iy = J.
In the next section, we will describe a numerical method for solving

~

£q. (4) with the above boundary conditions.

3. NUMERICAL METHOD

We employ the same methou developed by Fyfe et al., [8] in solving Eq. (4).
It consists of two steps: first, map a region n (u,e) phase space to a
retangular region in (x,y) space; and second, use a Galerkin finite-element
method. The same procedure is also applied to solving the Poisson equation
for the Rosenbluth potentials hb and g, .

The mapping technique is introduced to represent the curved boundary more
accurately than is possible when working directly in (u,e), (v”, vl), or
(v,8) space. Having boundaries running between the grid points is usually
unavoidable, unless either a mapping or a finite element method is used; this
is especially a concern when a distribution function is largest along a curved
boundary. In a tandem-mirror thermal barrier, tons have to be constantly
pumped out at the same rate as the trapping rate to maintain the density dip.
The ion distribution in this situation is peaked along the boundary between
passing and trapped regions. If one solves the problem in (v”, VL) or

(v,6) space, for example, this boundary is curved and cannot be aligned
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with any grid. Since the trapping rate is directly dependent on the
derivative of the distribution function on the boundary, the boundary must be
represented more accurately. The mapping also allows efficient integration
over finite elements because solutions are obtainea in a rectangular geometry.

The Galerkin method has a convenient feature that will make implementation
of boundary conditions straightforward. Especially, the Neumann condition
(zero flux condition) is implemented by simply dropping a surface term in the
the finite element equation. The flux continuity condition at the interface
can be satisfied exactly in this procedure.

Note that Eq. (4) is a nonlinear equation in f. However, in implementing
the numerical procedure, we linearize £q. (4); 1.e., in calculating the

coefficients, which are functionals of f, we substitute f from the previous

time step.
3.1 Mapping

Consider a region in a physical space with coordinates (S,T) as shown in
Fig. 4. The region is enclosed by two straight lines S = Smin and S = Smax’
and two curved lines T = h(S) and T = ¢(S), where h and 2 are single-valued
functions of S and piecewise continuous up to at least the first derivative.

The tranformation is then given by

(ymax " Ymin) T - [ymax 2(S) - Ypin h(s)) 1
y = R(ST = 2(5) ’ ()

which maps the region in (S,T) space into a rectangular region,

X < Xpows Ypin S Y <Y in (x,y) space.

. <
Xmm - — Y max
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Using u and € in place of S and T the transformation Eq. (11) reduces

8f _23_p af af
Jt d ax ( XX 93X ¥ ny 3y * Dxf)
(12)
3 of af
+ = — + — + D f
5y Pyeax T Oy 3y T O

where J is the Jacobian of the transformation,
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and the new coefficients are
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A simple example of the mapping is shown in Fig. 5. The triangular region
in (p,e) phase space shown in Fig. 5(a) arises for a single magnetic well
without potential. In this case the mapping transformation from Fig. 5(a) to

Fig. 5(b) is
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where Bb and BM are the magnetic field at the bottom and the mirror throat,
3 = = H F ] ~ 1
respectively, and we let Yoin 0, Ymax . iqure 5(c) illustrates the

corresponding mesh in (v”, vl) space mapped from the uniform rectangular

mesh in (x,y) space.

As a more complicated example, we consider a case of a single magnetic
well with a repelling potential (Fig. 6). This is a typical situation that
arises in a single mirror machine with neutral beam injection. The phase-
space diagram in (e,u) corresponding to this case is shown in Fig. 7(a).
Three regions exist: one region between boundaries 1 and 3; and two regions
enclosed by boundries 1, 2, and 3. The latter two regions are on separate
sheets; they look identical because of the symmetry of the profiles of B(z)
and gd(z). The particles in these two regions are trapped off the midplane
and never pass the midplane. We apply the mapping [Eg. (11)] to each region
separately as shown schematically in Fig. 7. Figure 7 also illustrates the
corresponding mesh in (u,e) space, which is mapped from the numerical mesh
in (x,y) space. Note that the transformation for the two regions (below
boundary 3) has a discontinuity in the derivative at point A, This means that

we have to choose a set of basis functions that allow a discontinuity in the

x-derivative at point A [8].

3.2 Galerkin Method

A
In the Galerkin finite element method, an approximate solution f to

Eg. (12) is represented as

N
F(x,,1) = IEHOLACHINS (14)
1:
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where Bi(x,y) is the ith basis function in (x,y) space and ci(t) is the

A
ith coefficient. The solution f is then sought, which satisfies

, (15)

where @ denotes the mapped rectangular region corresponding to each region in
<>

(u,e) space, and V¢(P-V + Q) represents the right-hand side of Eq. (12) with
V being agradient operator in (x,y) space. Substituting Eq. (14) into Eq. (15) and

integrating by parts, we obtain

f& dci
fdxd_yJTB.B. A
i=1 |“@ T at

(16a)
N —
= - 2: dexdy (PeyB. + QB.)+¥B.? c. + (surface terms) ;
& i 274 j i
i=1 ["@
(d = 1,2, ..., N)
or in a matrix notation
— dc
B d;’= Aec + (surface terms) (16b)

>

-+
where the elements of matrices A and B are

B B
= . + L
aij jl dxdy (P VBi Q 1-) v j oo

by = f_@ dxdy J1B B,

Following Fyfe et al., [8], we chose for the basis function Bi(x,y) a product of

one-dimensional splines defined on a rectangular mesh, i.e.,

Bilx,y) = op(x)g(y) » 1=k + Ny(e-1) (17)
kK=1,2, .o, Ny , 2=1,2, ..., N
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where ¢k(x) and wg(y) are B-spline basis functions [9]. Typically we use
a Tinear or cubic polynomial for ¢'s and ¢'s. The integrals in Eq. (16),
ajj and bij’ are computed by a Gauss quadrature rule; every integral of the

form Jf dxdy g(x,y) is approximated by

b d b-a c-d R
f dx f d.y g(x9.y) = 7 ¢ "_?— Z: Z W-iwj g(E.‘an) ’ (]8)
a c i j
where
_b-a b+ a _d-c d +c
E"i = > 91"" p; s T'\J-' 5 9j+ —5 s

ana w, are the weights and 8, are the nodes for the Nq-po1nt Gaussian
guadrature scheme on the internal [-1,1].

Let us now discuss implementation of the bouncary conditions. There are
three types of boundary conditions to be considered; the first is the Neumann
(natural) condition (or zero flux). The seconc i< the Dirichlet condition (or
fixed ?), and the third is the flux continuity at the interface. Equation
(16) has to be modified to take into account these boundary conditions.

First, the Neumann condition is implemented simply by dropping the surface
term in each equation for the coefficient <'s associated with the corres-
ponding boundary. Second, the Dirichlet condition on a certain boundary can
be implemented by dropping the surface term and then modifying the elements of
matrices 3Tand §*so that the coefficient c's asscciated with the boundary do
not change in time. Finally, the flux continuitv along the interface is
implemented as follows. Equation (16) is a system of ordinary differential
equations for the basis function coefficients o (i =1, ..., N); one such
system is calculated for each region of the phase space. Note that most of

the surface terms are zero except for some particular i that is associated
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with the interface. When two equations, one from a region and the other from
another region interfaced with it, are acded, the surface terms should cancel
each other. The two systems of equations for the coefficients can then be
combined into one with flux continuity satisfied exactly at the interface.
This same procedure can be used no matter how many regions are connected at
the interface. Thus, we obtain a combined system ot ordinary differential

equations for a muitiregion (i.e., multisheeted) phase space,

*
H*dim*

B.dtzA.E, , (19)

where %" and B represent the combinea A anu B with modifications resulting
*

from all the boundary conditions, and ¢ is the combined basis function

coefficient vector.

Time-differencing Eq. (19), we have

* _] <k * _ _] +>k *
(B! - gl 1ecr,, = War ! +(eK000 (20)

where 8 is an implicitness factor and the subscript n represents the values
at the nth time step. To invert the matrix on the left-hand side of Eq. (18),

we use the sparse matrix package developed at Yale University [10].

3.3 Rosenbluth Potentials

The Rosenbluth potentials hb and 9p > satisfy Poisson equations as
shown in Eq. (7). We chose to solve these b, the Galerkin finite element

method. Ignoring the gyrophase depencence, we have
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2
1 3 ah a"h
— (v /) * = -4uf
v av, L av, av”2
(21)
2
1
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where v and v, are perpendicular and parallel velocities. For simplicity

we dropped the subscript b. Note that h and g are functions of axial position

z, as well as v, and Ve Equation (21) is to be solved for each

L

z-grid position. To solve Eq. (21) in a velocity space 0 < v , VvV, <V

121 ="m
we let S = yl/vm, T = v”/vm, and obtain

2

(22)
12 (g L8,
S 3% as) 3 =2V D

Because the velocity space is square, we can use the same finite element
method without a mapping.

The boundary conditions for Eq. (22) are the following: (1) h and g are
regular at S = 0, (2) 3h/3T

3g/3T = 0 at T =0, and (3) h and g are

specified along S =1 and T = 1, i.e., Dirichlet condition. The Dirichlet

conditions are given by the following integrals:

2,1/2

1T, (=s)E 2
Al , -1/2
h(s,T) = av f ds s f aTroF(S.T ) ]; K(g , ri) A, ,
0 0
(23)
2\ 1/2
2 ] | ] (]-§ ) | ] 2 T ]/2
g(S,T) = 4v_ ,g ass ) a f(S,T) _21 E(z, ry) A s
":
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where K and E are elliptic functions of the first and second kind,

respectively, and

Ay = (s+sHie(r-TH?
R, = (s+sHPe(TeT)E
rooo= (4 SS'/Ai)]/Z

>
Because the diffusion coeffiecients D¢ and ﬁc involve the second

derivatives of hb and 9> We employ basis functions based on cubic B-splines

to represent hb and I -
4. EXAMPLE CALCULATIONS

In this section, we present some numerical results of two example
problems; the first is a neutral beam injection problem for a single mirror
and the second is an electron-cyclotron resonant heating problem for a tandem
mirror with thermal barriers. The former is an example of a single-region

problem, and the latter is that of a three-region problem.

4.7 Neutral Beam Injection

One of the key ingredients in the operation of a tandem mirror with
thermal barriers is the presence of sloshing ions in the end plugs. The
sloshing ion distribution can be generated by injecting a neutral beam at an

oblique angle to the magnetic field at the bottom (i.e., midplane) of a
magnetic well. This creates ion density peaks off the midplane and helps

establish a plug potential at one of the peaks.



-20-

To model the beam injection, we add the following term to the right-hand

side of the kinetic equation
s =X a2 0]+ vl) nusy(v) - X af2) A0 f (24)
b ’ - b

where ab(z) represents the axial profile of the beam; v? and v: are the
ionization and charge exchange rates; n; [=4/.d3!f] is the ion density;
Sb(X) is the neutral beam velocity distribution, and the superscript b
denotes the bth component of the beam. FEquaticn (24) is integrated numerically
along the bounce orbit and added to the right-hand side of £q. (4). The rf
diffusion and synchrotron radiation terms are not included in this calculation.

The above example was chosen to mode! the sloshing-ion experiment in
TMX-U [11]. We calculate the end-plug ior distr:bution only and treat the
central-cell ions as a fixed passing distribution. The magnetic field profile
is shown in Fig. 8(a); z = 0 corresponds to the midplane of the plug. The
potential is ignored because the beam energy is much larger than the potential
generated. Electrons are assumed to be Maxwellian with energy (Te = 60 eV)
smaller than the ion energy and act as drag on the jons. The neutral beam
consists of three energy components; 16 «eV, 8 keV, and 5.33 keV injected at
47 degrees with respect to the magnetic fiela #t z = 0. The effects of cold
gas are also included by adding extra cold 1on source and charge exchange
loss. We used 48 x 16 mesh cells of nonuniform size, linear splines for the
basis functions, 2 x 2 quadrature points in each cell, and 16 points in the
axial direction where the Rosenbluth potentials are calculated. For the
Rosenbluth potentials, we used 16 x 16 cells, cubic splines for the basis
functions, and 4 x 4 quadrature points.

Figure 8(b-c) shows the density and energy vs axial position at the

steady state, and Fig. 9 shows a contour plot of the distribution function at
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the midplane, z = 0. In fig. 8 the density and energy obtained from the code
of Cutler et al., [3] are also shown by dashed lines. Cutler et al., used a
finite-difference method for the Fokker-Planck operator and a Legendre
expansion technique in solving for the Rosenbliuth potentials. These results
from two different codes are in good agreement. Note that these Fokker-Planck

code results compare favorably with a TMX-U experiment in Ref. 11.

4.2 Electron-Cyclotron Resonant Heating

Electron-cyclotron resonant heating (ECRH) is the other key ingredient in
the operation of a tandem mirror with thermal barriers. The purpose of the
ECRH is to manipulate the electron-velocity distribution in the end plugs to
generate a thermal barrier and to enhance a plug potential [6]. The magnetic
field and potential profiles used in this calculation are those shown in
Fig. 1. The ECRH is applied at two locations: the thermal barrier and the
plug potential peak. The former is to help depress the potential by
generating mirror-trapped hot electrons, and the latter is to enhance the
potential by heating the potential-trapped electrons.

The main objective of this three-region Fokker-Planck calculation is to
find a steady-state solution for the electron distribution in the end plug.
From this solution, we can obtain necessary irformation for operating an end
plug (e.g., steady-state density and energy ot the electrons, power
requirement for ECRH to maintain such a steadv state, and effect of wave
polarization and the Doppler shift).

We assume a fixed density and a temperature at the left mirror throat,
determined by central-cell electrons with aensity Noe = 8 x 1012 cm_3 and

temperature Tec = 0.6 keV. These electrons cetermine the boundary condition
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and act as a source for the trapped electrons. lons are assumed to be cold
ana cause pitch angle scattering of electrons. The ECRH is applied by specifying

rf electric field a, in Eq. (10). Funcamental heating (v = w js used at the

ce!

plug potential peak (z = 110 cm); and second harmonic heating (w = 2w is used

ce)
near the bottom of the magnetic field (z = 65 cm) The fundamental electric field
is set at 20 V/cm and has a Gaussian width of ~ cm about z = 110 cm. The

second harmonic electric field is set at 9G V/cm with a Gaussian width of 15 cm
about z = 65 cm. Only the right-handed circularly-polarized component is used

in this calculation. The synchrotron radiation term is not included. These
parameters are either expected or considered reasonable to be realized in

TMX-U.

The results of the Fokker-Planck calculation show that the projected
density and energy of the end-plug electrons in TMX-U can be achieved with the
available ECRH power [12]. The results also incicate that the plug density-
potential relationship obtained from the code agrees with analysis [13].
Because the main physics results have been presented in Ref. 12, we only
present part of the numerical results here. We used 3¢ x 12, 20 x 6, and
20 x 8 cells in the three regions, respectively; linear splines for the basis
functions; 2 x 2 quadrature points in each cel . anc 31 points in the axial
direction, where the Rosenbluth potentials are calculated. For the Rosenbluth
potential, we usea 16 x 16 cells, cubic splines for the basis functions, and
4 x 4 guadrature points.

In Fig. 10{a), we show the electron density and energy vs axial position
obtained from the Fokker-Planck code. For comparison, the results of a Monte
Carlo code are shown in Fig. 10(b); the two cades are in good agreement.

Figure 11 shows the electron-distribution furction at steady state for three

different axial positions: (a) near the plug potential (z = 110 cm), (b) at
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the thermal barrier (z = 0), and (c) at a position (z = -75 cm) between the
left mirror throat and the barrier. In Fig. 11(a), the elliptical region near
the origin corresponds to the potential-trappea electrons. The rf heating
characteristics resulting from the ECRH fundamental heating are lines with

vy = constant. The distribution in this region is rather flat because the

rf heating dominates over collisions. The region ahove corresponds to the
mirror-trapped hot electrons; the heating characteristics, mainly determined
by the second harmonic heating, are roughly parcliel to the elliptical
boundary. Figure 11(b) shows that the mirror-trapped distribution is pulled
along the heating characteristics line that (or-espords to the turning-point
resonance for the second harmonic (n = 7 . ~he effect of the fundamental

(n = 1) heating is less obvious here than in Fig. 17la). Figure 11{(c) shows
the distribution where there exist Yushmanov-trapped electrons, which are
trapped between the left mirror throat and the barrier. These electrons
occupy part of the elliptical region indicated in Fig. 11(c) and are clearly
not affected by ECRH. Note that these Yushmanov-trapped particles in general
do not have a unigue center of bounce motion. Therefore, a reference point
for a single distribution function cannot be chosen to describe all the
Yushmanov particles; this is the reason why the use of variables ¢ and y

i1s advantageous. We also note that the distribution function is connected

smoothly at the interface, which is indicated by arrows in Fig. 1 and Fig. 11.

5. CONCLUSIONS

We have described a relativistic, multiregion, bounce-averaged Fokker-

Planck code, which was developed primarily to study the physics of mirror

machines on a collisional time scale, including neutral beam injection,
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electron-cyclotron resonant heating, and synchrotron radiation loss. The use
of a Galerkin finite element method made it easier to implement the boundary
conditions, especially at the interface of regions. The mapping technigue was
introduced to determine curved boundaries accurately and to improve the
efficiency of the finite element procedure.

We have also presented the results of two example problems using the code;
these examples show good agreement between our code, other Fokker-Planck
codes, a Monte Carlo code, and analysis. Although the development of the code
was motivated by the need to study present and future tandem mirror machines,
the code is flexible enough to be used for other praoblems, inciuding those in
tokamaks (e.g., current drive [14] by lower-hydr-a wave heating or ECRH).

Two major areas need to be improved or extended: one is a nonlinear
relativistic collision operator; and the other is the self-consistent
potential and finite-B effect. The fully nonlinear relativistic collision
operator will be needed to study ECRH probiems where hot electrons of several
hundred keV in energy are involved as in MFTF-B [15]. Including the self-
consistent potential and finite-g effect in the code is a complex problem
because the phase-space topology changes in time {i.e., the multivalued nature
of the distribution function changes because of the appearance and
disappearance of regions in the phase space). The extension of the code into

these areas is currently in progress.
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FIGURE CAPTIONS

Magnetic field and potential profiles in the end plug of a tandem

mirror. The central cell is to the left, and the end wall is to the

right.

Effective potential as a function of the axial position with

magnetic moment as a parameter. This illustrates three groups of

trapped electrons and a group of passing electrons from the central

cell.

Phase space diagram for electrons in the end plug illustrated in

Fig. 1. The arrows indicate the interface below which the phase

space is double sheeted.

Mapping from a physical space in (S,T) to a rectangular space in

(x,y).

(a) A phase space diagram in (u,e) for a single magnetic well;
also illustrated is the numerical nesh,

{(b) The phase space mapped on (x,y) space with a rectanqular mesh.

(c) The numerical mesh in (v, v ) space that corresponds to

n* i
that in (b).
Magnetic field and potential profiles of a single mirror with a
repelling potential. An example of a three-region problem,
(a) Phase space diagram for the profiles shown in Fig. 6.

(b) The phase space mapped on (x,y) space with a rectangular mesh

in each region.



Fig. 9.

rig.

Fig.

10.

11.

-29-

(a) Magnetic field profile used for a neutral beam injection
problem. The midplane is at z = C.

{(b) Density vs axial position at the steady state. The solid line
is the result from our code and the dashed 1ine is from the
code of Cutler et al.

(c) Kinetic energy vs axial position at the steady state.

Contour plot of the ion distribution function in the momentum space

at the midplane that corresponds the results shown in Fig. 8.

Comparison of (a) our code results and (b) the Monte Carlo code

result for the ECRH problem.

Contour plot of the electron distribution function in the momentum

space. The arrows indicate the interface corresponding to that in

Fig. 3.

(a) Near the plug potential (z = 110 cm). Also shown are the
boundar ies separating the mirror-trapped electrons,
potential-trapped electrons, and the passing electrons from the
central cell.

(b) At the thermal barrier (z = 0). The boundary shown separates
the mirror-trapped electrons and the passing electrons.

(c) At z = -75 cm. The boundaries shown separate the
mirror-trapped electrons, the Yushmanov-trapped electrons, and

the passing electrons.
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